This page makes publicly available the source code and the data for detection and analysis of smooth pursuit eye movements. For our hand-labelling tool, please see this link.
For questions, feedback, etc., please contact us via mail at < firstname.lastname > @tum.de : Mikhail Startsev, Ioannis Agtzidis, Michael Dorr.
Algorithm | Related publication | Source code | SP F1 |
SP precision |
SP recall |
SP FPR |
Fixation F1 |
Fixation precision |
Fixation recall |
Saccade F1 |
Saccade precision |
Saccade recall |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1D CNN-BLSTM [Startsev, Agtzidis, Dorr] | Mikhail Startsev, Ioannis Agtzidis, Michael Dorr. 1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits | python + Matlab, most recent version on GitHub | 0.703 | 0.786 | 0.637 | 0.022 | 0.939 | 0.915 | 0.966 | 0.893 | 0.895 | 0.891 |
[Agtzidis, Startsev, Dorr] | Ioannis Agtzidis, Mikhail Startsev, Michael Dorr. Smooth pursuit detection based on multiple observers | python, most recent version of the toolkit on GitHub | 0.646 | 0.711 | 0.592 | 0.030 | 0.886 | 0.930 | 0.846 | 0.864 | 0.901 | 0.829 |
I-VMP | San Agustin, J. Off-the-shelf gaze interaction | Matlab, by Komogortsev, parameters optimised on the entire GazeCom data set, see here |
0.581 | 0.666 | 0.515 | 0.032 | 0.909 | 0.864 | 0.959 | 0.680 | 0.799 | 0.592 |
REMoDNaV | Asim H. Dar, Adina S. Wagner, Michael Hanke. REMoDNaV: Robust Eye Movement Detection for Natural Viewing | python | 0.480 | 0.351 | 0.758 | 0.174 | 0.822 | 0.925 | 0.741 | 0.692 | 0.548 | 0.937 |
[Larsson et al.] | Linnéa Larsson, Marcus Nyström, Richard Andersson. Detection of fixations and smooth pursuit movements in high-speed eye-tracking data | Matlab, reimplementation by Startsev et al. | 0.459 | 0.576 | 0.382 | 0.035 | 0.912 | 0.872 | 0.956 | 0.861 | 0.881 | 0.841 |
[Berg et al.] | David J. Berg, Susan E. Boehnke, Robert A. Marino, Douglas P. Munoz, Laurent Itti Free viewing of dynamic stimuli by humans and monkeys | C++ | 0.422 | 0.512 | 0.360 | 0.042 | 0.883 | 0.901 | 0.867 | 0.697 | 0.630 | 0.780 |
[Dorr et al.] | Michael Dorr, Thomas Martinetz, Karl R. Gegenfurtner, Erhardt Barth Variability of eye movements when viewing dynamic natural scenes | authors' implementation, C++ (unlabelled samples with confident tracking assumed to be pursuit) |
0.381 | 0.360 | 0.404 | 0.089 | 0.919 | 0.897 | 0.943 | 0.829 | 0.822 | 0.836 |
I-VDT | Oleg V. Komogortsev, Alex Karpov Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades | Matlab, parameters optimised on the entire GazeCom data set, see here |
0.321 | 0.299 | 0.347 | 0.101 | 0.882 | 0.861 | 0.903 | 0.676 | 0.787 | 0.592 |
I-VVT | Oleg V. Komogortsev, Alex Karpov Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades | Matlab, parameters optimised on the entire GazeCom data set, see here |
0.0 | 0.011 | 0.0 | 0.002 | 0.890 | 0.809 | 0.989 | 0.686 | 0.797 | 0.603 |
@article{startsev2018cnn,
author="Startsev, Mikhail and Agtzidis, Ioannis and Dorr, Michael",
title="1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits",
journal="Behavior Research Methods",
year="2018",
month="Nov",
day="08",
issn="1554-3528",
doi="10.3758/s13428-018-1144-2",
url="https://doi.org/10.3758/s13428-018-1144-2"
}
@inproceedings{startsev2018deep,
author = {Startsev, Mikhail and Agtzidis, Ioannis and Dorr, Michael},
title = {Deep Learning vs. Manual Annotation of Eye Movements},
booktitle = {Proceedings of the 2018 ACM Symposium on Eye Tracking Research \& Applications},
series = {ETRA '18},
year = {2018},
isbn = {978-1-4503-5706-7},
location = {Warsaw, Poland},
pages = {101:1--101:3},
articleno = {101},
numpages = {3},
url = {http://doi.acm.org/10.1145/3204493.3208346},
doi = {10.1145/3204493.3208346},
acmid = {3208346},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {event detection, eye movement classification, smooth pursuit},
}
@inproceedings{startsev2018sequence,
title = {Sequence-to-sequence deep learning for eye movement classification},
author = {Startsev, Mikhail and Agtzidis, Ioannis and Dorr, Michael},
booktitle = {Proceedings of the European Conference on Visual Perception},
year = {2018},
note = {(In press)}
}
@inproceedings{agtzidis2016smooth,
title={Smooth pursuit detection based on multiple observers},
author={Agtzidis, Ioannis and Startsev, Mikhail and Dorr, Michael},
booktitle={Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research \& Applications},
pages={303--306},
year={2016},
organization={ACM}
}
@misc{sp-detection-site,
author = {Startsev, Mikhail and Agtzidis, Ioannis and Dorr, Michael},
title = {Smooth Pursuit},
howpublished = {\url{http://michaeldorr.de/smoothpursuit/}},
year = {2016}
}.
@inproceedings{StAgDo17,
title = {Manual \& Automatic Detection of Smooth Pursuit in Dynamic Natural Scenes},
author = {Startsev, Mikhail and Agtzidis, Ioannis and Dorr, Michael},
booktitle = {Proceedings of the European Conference of Eye Movements},
year = {2017},
}
@inproceedings{StLeDo17,
title = {Optimizing clustering-based smooth pursuit detection},
author = {Startsev, Mikhail and Lee, Albert Tae-Young and Dorr, Michael},
booktitle = {Proceedings of the European Conference on Visual Perception},
year = {2017},
note = {(In press)}
}