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Abstract

This work explores saliency prediction for panoramic 360◦-scenes stored as equirectangular images, using exclusively
regular “flat” image saliency predictors. The simple equirectangular projection causes severe distortions in the resulting
image, which need to be compensated for sensible saliency prediction in all viewports. To address this and other arising
issues, we propose several ways of interpreting equirectangular images and analyse how these affect the quality of the
resulting saliency maps. We perform our experiments with three popular conventional saliency predictors and achieve
excellent results on the “Salient360!” Grand Challenge data set (ranked 1st among the blind-test submissions in the
Head-Eye Saliency Prediction track).
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1. Introduction

Even though we seemingly perceive our entire surround-
ing as a whole, this is impossible because of the physical
constraints of our visual system. Only a small part of our
visual field is projected onto a high-resolution part of the
retina – the area called fovea. This foveation reduces the
computational load on the visual cortex and bandwidth re-
quirements on the optic nerve, but forces our eyes to con-
stantly scan the scene to obtain the “full picture”. This
means that from such fragmented input our brain has to
reconstruct a comprehensive model of what surrounds us.
The strategy of visual exploration is therefore an impor-
tant factor of human adaptation, which had both social
and environmental factors impact its development.

Being able to predict or model the process of this “bio-
logically-approved” attention allocation can aid various
computer vision-related areas in the struggle for sparsity
[1, 2], help action recognition [3, 4] and semantic segmen-
tation [5], or even potentially shed light on and aid diagno-
sis of mental disorders [6, 7]. With 360◦-content becoming
more and more widespread on popular image- and video-
sharing platforms, as well as with the rise of consumer-
oriented virtual reality applications and 360-camera set-
ups, the saliency models for such stimuli can facilitate its
analysis and compression, for example in order to enhance
user immersion.

Working with the panoramic image scenario is gener-
ally beneficial for understanding attention. First of all,
whereas conventional 2D image saliency data sets are of-
ten recorded under restrictive laboratory conditions, the
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free head motion of 360◦-recordings means this scenario is
much closer to real-life viewing behaviour.

Just as regular image or video saliency, this scenario
does not yet introduce the social aspects of attention, such
as avoiding either prolonged eye contact with strangers [8]
or even looking at people when they are close-by in a gen-
uine social context altogether [9], or seeking out familiar
faces in crowds. But the prioritisation of observers’ atten-
tion has a different component to it, making it two levels
deep: first the head rotation, and then the eye gaze direc-
tion.

Compared to fully-unconstrained complex recording sce-
narios, static 360◦-stimuli allow us to analyse common ob-
jects and regions of interest for multiple observers without
having to match the contents of the foveated patches with
one another, or deal with depth perception or occlusions.
This eases the transition from numerous readily available
2D image saliency predictors, which have much larger data
sets that could be used for training and evaluation. This
work explores the possibilities and needed image transfor-
mations to perform this very transition.

In this work we have, therefore, proposed a range of
transformations of the input equirectangular images, which
we call “interpretations”, that allow us to predict 360◦

saliency using any existing 2D attention model. In our ex-
periments, we used three publicly available saliency pre-
diction algorithms that model different levels of the visual
processing hierarchy. Our approach demonstrated excel-
lent results on a data set of omnidirectional images without
any training or parameter adjustments.

In contrast to the work in [10, 11], for example, which
presents a CNN-based approach, where the network is fit-
ted for the available set of the equirectangular images, and
several strategies to prevent overfitting had to be applied
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(a) (b)

Figure 1: Equirectangular image example (1a) and its ground-truth saliency map (1b).

(a) (b)

Figure 2: Distortion visualization for equirectangular projection (2b) and the set of corresponding cube map faces (2a). Note that the red
bottom and top stripes in (2b) each represent just one disk on top and bottom faces of (2a).

as a consequence of the data set size, our approach does
not require any additional training and can be used with
any conventional pre-trained saliency model. In [12], an
approach involving an idea similar to what we here call
“interpretations” was applied for predicting salient view-
ports as a post-processing step for conventional saliency
predictors’ outputs, but it does not get rid of all the is-
sues that arise for the eye gaze-based saliency prediction,
originally only addressing the centre bias.

2. Proposed approach

Dealing with omnidirectional images is a challenge on
its own, as the “perfect” way to store and process them
is yet to be developed: So far, there is always a trade-off
between efficiency, visual interpretability, and convenience
of use. The data set that we use in this work (described
in Section 3.1) employs equirectangular projection, so we
first examine its artefacts, and then describe how they can
be mitigated for a better saliency prediction via proposed
interpretations.

2.1. Motivation

Aside from the obvious unnatural visual stretching of
the objects at the top and the bottom of any equirectan-
gular image (for an example, see Figure 1a), there are sev-
eral issues that are particularly prominent when such an
image is being processed automatically, for instance by at-
tention predictors (for an example of an empirical ground
truth saliency map, see Figure 1b). In [13], a similar data
set to the one used here was introduced, and the authors
reported some preliminary findings regarding the equirect-
angular image peculiarities in the context of subjective and
objective quality evaluation. In [12], the authors investi-
gated the prediction of head rotation-based saliency and
examined the artefacts occurring in such “head saliency
maps”.

A regular saliency predictor expects its input to be a
2D image, and does not rely on any additional information
about it. Below we describe several reasons why directly
applying a saliency prediction models to equirectangular
images might not be wise. First, the already mentioned
image structure distortions might result in irregular fea-
ture responses. A significant part of an image produced
through equirectangular projection suffers little to mod-
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(a) (b)

Figure 3: “Centre bias” visualized as empirical mean saliency maps for the MIT1003 data set [19] of regular 2D images (3a) and for the
“Salient360!” [18] training set (3b).

(a) (b) (c)

Figure 4: Example saliency map predictions directly on an equirectangular image with the three existing predictor models we use in Section 3.3:
GBVS [20] (4a), eDN [21] (4b) and SAM-ResNet [22] (4c). Here we take the image in Figure 1a as input. The ground-truth saliency map in
Figure 1b has its highest values along the bottom border, and the vertical borders neither on the left nor on the right side affect the continuity
of the central “saliency strip”. Both these observations do not hold for either of the directly predicted saliency maps.

erate shape distortion, but the parts close to its top and
bottom are noticeably malformed, enough for a human
not to recognise a shape right away (see an example image
pair for a set of simplest shapes in Figure 2; also, can you
recognise a human head in Figure 1?).

The second issue is related to the well-known centre
bias effect, observed at least as early as 1935 [14], which is
very noticeable in regular image saliency data sets (see Fig-
ure 3a), and is extremely persistent across different data
sets, tasks, image feature distributions, or forced first fix-
ation location for static images [15], as well as for videos
of dynamic natural scenes [16, 17].

This effect is very different for 360◦ images (see Fig-
ure 3b). Instead, we see attention bias along the verti-
cal axis, with the central, the top-most, and the bottom-
most locations of the equirectangular images all accumu-
lating significant portions of the overall saliency distribu-
tion. This was also observed in [18], as well as in [12],
in that case even more prominently so for the head-only
saliency. The term “equator bias” was used in the latter
to describe this effect, and a general way to overcome the
centre bias tendency in regular saliency predictions was
introduced.

The two issues described above lead in turn to a third

problem. The border artefacts that could be neglected
for regular image saliency prediction, in part due to the
centre bias (on average, only a small part of saliency is
allocated close to the image borders), can be neglected
no more. From the theoretical standpoint, there were no
actual borders in the stimulus, the viewport never con-
tained a discontinuous image during recording. Now from
the practical point of view, directly applying a regular
saliency model to an equirectangular stimulus will most
likely generate some border effects, both vertical (i.e. ne-
glecting horizontal continuity; the object right behind the
starting point of the observation is basically cut in half
and is not seen as a set of closely located pixels by the
saliency predictor) and horizontal (which means that the
most prominent parts of the average ground truth empir-
ical saliency map in Figure 3b are likely to fall into the
border effect zone). Example saliency maps produced by
the three saliency predictors we use in our experiments
(see Section 3) can be found in Figure 4.

2.2. Outline

We propose to deal with these issues with what we call
“interpretations” of the equirectangular image format. In
our approach (see Figure 5 for the overview of its stages),
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Figure 5: The sequence of steps in our approach (top row). Example data samples from each stage are presented towards the bottom of the
figure.

we first create a set of intermediary images derived from
the input image (this derivation is what we mean by “in-
terpretation”). For these, respective saliency maps are
predicted and subsequently re-projected into the equirect-
angular space corresponding to the input image, before
they are combined into a final saliency map.

In order to combine several overlapping saliency maps
into one, the final map is produced by taking the great-
est predicted value in each individual pixel (i.e. applying
the pixel-wise maximum operation). If we were to use the
mean of predicted values, the pixels that were affected by
border-related effects at least in one of the intermediary
saliency maps would be at great disadvantage, compared
to pixels that were never close to saliency map borders.
Since we cannot guarantee the uniformity of the individ-
ual, interpretation-, model-, and content-dependent bor-
der effects across all pixels of the final saliency map, a rea-
sonable solution would be to ignore the saliency values that
were affected by being too close to borders. Using pixel-
wise maximum achieves just that, discarding the very low
intermediate saliency scores along the borders, provided
that the respective values have been re-computed in any
of the other saliency maps with a higher estimated saliency
score.

The resulting saliency map is always smoothed with
a Gaussian filter (σ proportional to the image size, σ =
16 px for input image height of 1024 px), and normalized
to contain only non-negative values that sum to 1 over the
entire map.

The following sections provide a detailed description of
the several interpretation techniques we have explored.

2.3. Continuity-aware interpretation

To address the artefacts occurring at the left and the
right borders of the input equirectangular images, we can

use the knowledge that those edges can be seamlessly stitched.
We therefore compute the saliency maps both for the orig-
inal image without any preprocessing, and an image that
has its left and right halves swapped (this is equivalent to
looking in the direction opposite to the starting gaze di-
rection, i.e. backwards). The reverse transformation is ap-
plied to the respective saliency map (the “original projec-
tion” step in Figure 5). The idea is graphically explained
in Figure 6.

This is similar to the Fused Saliency Map post-processing
method in [12], where the equirectangular input was trans-
lated horizontally several times before saliency maps were
predicted, and weighted averaging was applied to the pre-
diction results in order to cancel out the centre bias effect
of individual predictions. Here we need fewer rotations (2
instead of 4), since we attempted to switch off the centre
bias for our models, where possible, so we mostly needed
the rotation just to deal with the border artefacts of our
saliency predictors, i.e. help preserve local scene context
for feature computation near the borders.

2.4. Cube map-based interpretations

The continuity-aware interpretation only deals with left
and right input image borders. Projection distortions, as
well as the top and bottom border artefacts are not ad-
dressed. To remove the distortions of the equirectangular
projection, we can convert the input 360-image to six faces
of the cube centred around the camera position. The re-
verse projection brings the saliency maps from the cube
map domain back into the equirectangular one.

Another benefit of this interpretation can be inferred
from Figure 2. For example, since the entire bottom stripe
of the equirectangular image is produced from just one disk
in the centre of the bottom cube map face, the saliency val-
ues in this stripe will be extracted from the middle of the
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Figure 6: Saliency map computation via continuity-aware interpretation. The final saliency map is obtained with a pixel-wise maximum
operation on the two saliency maps on the right, which counteracts the artefacts seen on each of the two maps as dark to light blue vertical
stripes either at the left and right borders, or near the dotted cut line.

(a) (b)

Figure 7: An example of an equirectangular saliency map assembled from the individual saliency maps for the cube faces (7a) and a
combination of five such maps, produced at different cube rotation angles (7b).

respective cube face, which is unaffected by any potential
border effects. As a result, the equirectangular saliency
map produced with this interpretation in mind will be de-
void of the top and the bottom border artefacts (for an
example, see Figure 7a).

The use of cube maps for omnidirectional scenes is not
novel: In [23], several sphere-to-planar projections were
examined in search for alternatives to the equirectangu-
lar format, in order to reduce bitrate or increase video
quality at a given bitrate. Even though the cube map
was not the best one overall, it was still an improvement
over the equirectangular projection, while being natively
supported by modern software. The authors of [24] also
looked at a set of projections in the context of using the
geometric structure of the projection layouts to select the
“Quality Emphasized Regions” (QOR) for full-quality ren-
dering. The quality of the respective spherical video pre-
sented to the observer was evaluated at a fixed bit-rate.
The cube map layout yielded the best results in this study.
Using saliency maps to prioritize different viewports was

also suggested there (for selecting the QORs, adapted to
scene content). This generally indicates that the cube map
“interpretation” is not foreign to the field of 360◦-scenes.

We explored multiple ways of leveraging this particular
interpretation of the scene. First, we directly generated
the saliency maps for all the cube faces and assembled
them into an equirectangular saliency map (an example
can be seen in Figure 7a). This approach, however, loses
the global context and introduces as many as 24 smaller
border artefacts (4 for each face) that greatly deteriorated
the quality of the final saliency prediction.

To compensate for these borders, one can generate a
larger set of intermediary images and respective saliency
maps by extracting the faces at several different rotations
of the underlying cubic representation. This way we shift
the borders between the stitched faces around the equirect-
angular saliency map (after the re-projection step), thus
lessening the effect of these borders on the final map (see
Figure 7b). We take five different cube orientations: its
original orientation, rotated by 45◦ relative to each axis
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Figure 8: Extended cutout construction scheme (8a) and an image example (8b). The “main”, not-extended cutout is highlighted in light
green on 8a and in red on 8b. A filled cutout consists of all the shaded cube faces in 8a.

(a) (b)

Figure 9: An example extended cutout raw saliency map (9a) and its respective equirectangular projection (9b).

separately, and rotated by 45◦ relative to the first two
axes at the same time.

We can observe that the resulting saliency map does
not exhibit any artefacts around its borders (e.g. the lower
border accumulates significant amount of saliency, just as
in the ground truth saliency map for this input in Fig-
ure 1b). The context of the full scene is, however, still lost
for the saliency predictors, since they only process one in-
dividual cube face at a time.

To preserve all the original image information and con-
text in one image, one can assemble a cube map cutout,
which will look similar to that in Figure 2a, with the faces
replaced with pixels from the “main” cutout – the high-
lighted part – of Figure 8b. This does not fully get rid of
the border artefacts, since five out of the six faces have at

least two problematic edges either at the image border or
due to bordering with an empty part of the cutout (only
face “C” in Figure 8a would have no discontinuities at its
borders). A filled cutout, which is an image consisting of a
grid of 3 × 4 cube faces stitched together (see the shaded
areas of Figure 8a), just like the central rectangle around
the main cutout in Figure 8b, resolves only part of the bor-
der issues (four of the six main cutout faces are still at the
image border). To further minimize these, we introduce
an extended cutout, which augments the “main” and the
“filled” cutouts in such a way that all of the six original
cube map faces share all their borders with another face
(see the additional “E” and “B” faces to the left and right
of the centre row, and the inverted “E”-faces at top and
bottom in Figure 8a).

6



(a) (b) (c)

Figure 10: For the input image in Figure 1a: saliency maps for its top and bottom cube faces (10a), their combined projection onto the partial
equirectangular map (10b), and the final saliency map (10c), achieved by taking a pixel-wise maximum of the maps in Figures 6 and 10b,
plus blurring. Note that value ranges for Figures 6 and 10b are different.

We then compute the saliency map for the whole ex-
tended cutout at once (see Figure 9a), extract the maps
for all the cube faces of the “main” cutout and project
them back onto the equirectangular map (see Figure 9b).

This approach preserves the global context of the scene,
even though it over-represents parts of the panorama (in
particular, the top and the bottom faces are repeated more
than the rest; if these contain highly salient objects, this
can have noticeable effects on the final prediction). Distor-
tions are cancelled out, but the stitching in Figure 8b is not
perfect (e.g. “A” in Figure 8a wrongly borders on rotated
versions of itself in order to fulfil continuity constraints for
“B” and “D”). This interpretation also has the scene con-
tinuity information built into the cutout, since the objects
at the borders of the main cutout are now augmented with
the scene parts from the neighbouring cube faces, thus pre-
serving local context. These trade-offs and limitations can
be partly visually observed in the saliency maps produced
with this interpretation (see Figure 9).

We experimentally concluded that the extended cutout
was the best cube map-based interpretation we considered
(see Section 4.2).

2.5. Combined interpretation

With this interpretation, we try to combine the benefits
of both ideas above: the continuity-aware interpreta-
tion makes use of all the available contextual information
in an equirectangular image without any artificial over-
representation, while the cube map interpretation helps
undo the distortions introduced by the projection, as well
as does away with border effects at the top and the bottom
of the input image.

The idea here is to now use the cube map interpreta-
tion for the two most distorted cube faces only: the top
and the bottom ones (“A” and “F” in Figure 8a). The two
resulting saliency maps (see Figure 10a) are projected onto
the partial equirectangular map (see Figure 10b), and then
combined (see Figure 10c) with the full saliency map pro-
duced by the continuity-aware approach (as in Figure 6).
This interpretation was used to give example visualizations
for the pipeline of our approach in Figure 5, so it can be
consulted for a better overview.

This way, the resulting map (in Figure 10c) has no left
or right vertical border artefacts due to the continuity-
awareness, and no horizontal border artefacts due to the
top and the bottom cube map faces being processed sep-
arately. The distortions are addressed where it is needed
the most, and the scene context was not disbalanced dur-
ing prediction.

3. Experimental methods

In this section we outline the experiments we performed
and the evaluation procedures employed in the context of
this work.

3.1. Data set

The data sets used in this work were provided by the
“Salient360!” Grand Challenge at the IEEE International
Conference on Multimedia & Expo (ICME) 2017 [18, 25].
For head-eye saliency (i.e. for each viewport, the direction
of eye gaze was considered; this is a natural extension of
regular 2D saliency for the 360◦-image domain), a train-
ing set of 40 images and corresponding scanpaths and fix-
ation heat maps were provided. During the eye tracking
recordings, the images were presented for 25 seconds with
identical starting observation direction for all observers (at
least 40 for each image). The stimuli were presented with
an HMD Oculus-DK2 at 75 Hz and with a resolution of
960 × 1080 px per eye. Gaze data was recorded binocu-
larly with an SMI tracker at 60 Hz.

The test set consisted of 25 spherical images, with their
respective ground truth collected under conditions identi-
cal to those of the training set. Both the test image set
and its ground-truth empirical saliency maps were hidden
at the time of submission to the Grand Challenge.

All the 360◦ images and heat maps were represented
as flat 2D images through the equirectangular projection.
Scanpath coordinates were also given relative to this pro-
jection. An example image of the data set that visualizes
this projection is shown in Figure 1, along with its empir-
ical saliency map.

7



3.2. Evaluation

For evaluation, the Grand Challenge used four saliency
map metrics [18, 25]: i) two density-based metrics, which
compare the entire saliency map to the empirical “ground
truth” map: Kullback-Leibler divergence (KLD) and Cor-
relation Coefficient (CC), and ii) two location-based met-
rics, which consider only a set of selected locations on the
saliency map: Normalized Scanpath Saliency (NSS) and
Area Under the Curve (AUC, no class balancing; it tech-
nically considers the entire set of pixels of the saliency map
by sampling all the possible locations, but the thresholds
for building the Receiver Operating Characteristic (ROC)
only iterate through the values at fixated locations).

3.3. Saliency predictors

As for this work we focused on already existing pre-
trained models for image saliency prediction, we took three
different, well-performing open-source models from the
MIT300 image saliency benchmark [26, 27] (probably the
most widespread and established benchmark for image sali-
ency; the ground truth saliency maps are not publicly
available, and each submitted model is evaluated by the
benchmark organizers, after which the scores with respect
to eight popular quality metrics are published on the web-
site). No additional training was performed.

Small modifications were applied to all the models (where
possible and necessary) in order to i) support varying im-
age ratios by implementing adaptive downscale parameter
choice (since the original images are 1:2, and our input
interpretations in Section 2 additionally produce 1:1, 3:4
and 5:6 images, scaling all of them to one size would im-
pede accurate saliency prediction); ii) yield saliency maps
without any post-processing, such as blurring and normal-
ization (which would otherwise make the saliency values
incomparable when combining several saliency maps into
one); and iii) store saliency maps to disk using matrix-
based formats instead of images to avoid 8-bit quantiza-
tion.

Below we describe the three literature models that were
used in this work, in chronological order. Graph-based vi-
sual saliency (GBVS) was introduced in 2006 [20]. This
approach uses a set of Gabor filter responses, local con-
trast, and luminance maps as features on several spatial
scales. The feature maps are heavily downsampled, after
which sophisticated activation and normalization steps are
applied.

Ensemble of deep networks (eDN), introduced in 2014
[21], was a precursor of the deep learning methods for
saliency prediction that have afterwards become very pop-
ular. The model’s architecture can be represented as a
combination of six multilayer structures (one to three lay-
ers) of operations that were inspired by their biological
counterparts that take place in the visual cortex. Both
the final combination and each individual layered struc-
ture of the richly-parameterized operations were obtained
through hyper-parameter optimisation. A simple linear

classifier is used to distinguish salient and non-salient im-
age locations.

Saliency Attentive Model (SAM) is a recently (in 2016)
introduced model [22] that extracts image features via a
dilated ResNet architecture [28] (in the version used for
this work; the framework also includes an option to use
dilated VGG-16 [29] for feature extraction). It then em-
ploys a convolutional Long Short-Term Memory (LSTM)
network, which recurrently attends to different locations
of the feature tensor.

As saliency prediction is a multifaceted problem, there
is no one definitive metric for model evaluation, and hence
no one best model. If we use the well-established MIT300
benchmark [26, 27] to compare the three models listed
above, each of them comes out on top of the others accord-
ing to at least one metric. Table 1 contains an overview of
the models’ performance in the form of their ranks (out of
74 models) with respect to several metrics [30] (the rank-
ing snapshot was taken on the date of the Grand Challenge
submission deadline, May 2017). It can be seen that all
the models have their strengths and weaknesses, but SAM-
ResNet is probably the more consistently well-performing
one.

KLD∗

rank
CC∗

rank
NSS∗

rank
AUC∗

rank

balanced
AUC
rank

GBVS 9 27 28 22 14
eDN 43 35 39 18 7
SAM-ResNet 59 4 2 5 30

Table 1: The overview of the used 2D image saliency models’ perfor-
mance, as the rank of each respective model in the MIT300 bench-
mark [27] (metrics marked with ∗ were also used in the “Salient360!”
Grand Challenge [18, 25]).

To enhance the performance of our saliency prediction,
we also combined the final saliency maps generated by the
three models above. The benefits of combining several
saliency predictions into one have been thoroughly dis-
cussed in [31], as well as earlier in [32]. Taking the mean
of the predicted saliency maps falls under the category of
non-learning based approaches described in [31], and was
shown to outperform all of the baseline saliency models,
especially when averaging only over a small set of best
performers. The work in [32] only considered summation
(with different weighting schemes) and multiplication ap-
proaches, concluding that the simple mean performed best.
We therefore computed the average of the final saliency
maps produced with all three base saliency predictors (af-
ter the normalization step).

3.4. Experiments

In our work we tested various combinations of inter-
pretations (see Section 2) and saliency predictors (see Sec-
tion 3.3). Most of the preliminary experiments were per-
formed with eDN, whereas the final selection of interpreta-
tions was tested with all the models. We selected a subset
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Table 2: Training-set performance of the cube map interpretation variations (with eDN as saliency predictor). The symbol ≺ indicates
inferiority of the number on the left to the number on the right (i.e. greater for KLD and lower for the rest of the metrics).

Metric
Filled
cutout

Cube
faces

Cube faces
(5 rotations)

Extended
cutout

KLD 0.76 ≺ 0.74 ≺ 0.71 ≺ 0.69
CC 0.28 ≺ 0.33 ≈ 0.33 ≺ 0.35
NSS 0.30 ≺ 0.31 ≺ 0.40 ≺ 0.50
AUC 0.59 ≈ 0.59 ≺ 0.61 ≺ 0.64

(a) (b) (c)

Figure 11: The input image (11a), the respective SAM-ResNet saliency maps produced with the combined interpretation without (11b)
and with (11c) the rescaling factor for the partial saliency map.

of interesting combinations for submission to the Grand
Challenge.

4. Results and discussion

First, we here discuss the limitations and related pre-
liminary experiment of each interpretation group. Sec-
tion 4.4 summarises the performance figures of all evalu-
ated saliency predictors.

4.1. Continuity-aware interpretation
This is the simplest approach of the ones we have used,

which essentially changes the location of the vertical bor-
der in the equirectangular image by rotating the spheri-
cal image representation by 180◦ in the horizontal plane.
Since we do not know whether any objects happen to be
located at the stitching line, neither before nor after the
rotation, we simply combine the saliency maps produced
for the original image and the shifted one.

Another approach here could be finding such a stitch-
ing point on the image, where no object would be bisected,
and only predicting the saliency map for one equirectan-
gular image. It is, however, not guaranteed that such a
point always exists, and the resulting saliency map would
still have noticeable visually unnatural artefacts near the
stitching line.

A similar approach could be additionally applied to
eliminate vertical borders, but this requires more complex
spherical image manipulations (e.g. converting to a cube
map, rotating by 90◦ in the respective plane, and pro-
jecting back onto the equirectangular surface, with corre-
sponding reverse transformations taking place after saliency
prediction), whereas this interpretation was intended as
the simplest way of incorporating additional information
into the prediction process.

4.2. Cube map interpretations

As described in Section 2.4, there are multiple ways to
use a cube map to produce equirectangular saliency maps.
We evaluated (on the training set) four of them to find the
best one: individual cube faces (as in Figure 7a), individ-
ual cube faces at five different rotations of the spherical
image (same as in Figure 7b), filled cutout (the shaded
areas in Figure 8a), and extended cutout (all cube faces
in Figure 8a). Their performance figures are summarised
in Table 2. The trend is the same for all the four met-
rics: a filled cutout is inferior to using the individual cube
map faces, which is in turn improved by using several ro-
tated versions of the cube map, and the extended cutout
outperforms the rest (marked in bold in the table).

4.3. Combined interpretation

For this interpretation, we have additionally experi-
mented with the way of computing the saliency maps for
the top and the bottom cube faces: either separately, or as
part of an extended cutout. The former approach proved
to outperform the latter with big margins (on the training
set, with eDN used for saliency prediction): 0.65 vs. 0.57
AUC, 0.36 vs. 0.29 CC, 0.68 vs. 0.75 KLD, 0.53 vs. 0.24
NSS, respectively.

One adjustment we had to make for this approach was
concerning one of the saliency predictors (namely SAM-
ResNet), which in this set-up tended to over-represent the
top and bottom cube planes (see Figure 11b), probably
because of the lacking context. We therefore attempted
to quantitatively examine this disbalance. To this end,
we split each of the resulting saliency maps in two parts:
part A – the middle third (horizontally) – and part B –
the rest of the map. We then computed the ratio of the
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Table 3: Saliency maps evaluation results, depending on the equirectangular image interpretation and the saliency predictor model. Best
results for each metric are boldified.

Metric Predictor Continuity-aware Extended cutout Combined
KLD GBVS 0.67 0.76 0.66

eDN 0.67 0.64 0.62
SAM-ResNet 0.55 0.74 0.48

average 0.50 0.58 0.45
CC GBVS 0.35 0.29 0.35

eDN 0.41 0.40 0.43
SAM-ResNet 0.54 0.31 0.56

average 0.55 0.41 0.58
NSS GBVS 0.73 0.46 0.64

eDN 0.75 0.63 0.67
SAM-ResNet 0.84 0.56 0.70

average 0.92 0.69 0.81
AUC GBVS 0.71 0.64 0.70

eDN 0.72 0.68 0.69
SAM-ResNet 0.75 0.67 0.71

average 0.75 0.69 0.73

maximal saliency value in part B to that in part A for each
individual saliency map.

It turned out that the ground truth maps and both
the eDN and the GBVS saliency maps (produced via the
combined interpretation) all had the mean of these ratios
around 1 (0.73 for the ground truth to 1.16 for GBVS). For
the SAM-ResNet saliency maps it was, however, 4.51. We
therefore divided all the values in the partial (for the top
and the bottom cube map faces, see Figure 10b) equirect-
angular SAM saliency map by this coefficient prior to com-
bining it with the continuity-aware saliency maps (see Fig-
ure 11c). The improvement of this rescaling is again quan-
titatively noticeable: 0.68 vs. 0.62 AUC, 0.53 vs. 0.4 CC,
0.51 vs. 0.7 KLD, 0.48 vs. 0.1 NSS, with and without this
modification, respectively.

4.4. All results

For a more complete evaluation of our approach, we
can consider using each of the selected 360◦-image in-
terpretations (i.e. continuity-aware, extended cutout and
combined) with each of the employed saliency predictors
(i.e. GBVS, eDN, SAM-ResNet, and their average) in turn.
The full table for all results of our predictor-interpretation
pairs can be found in Table 3.

Additionally, to any of the resulting saliency maps we
can optionally add the mean ground truth saliency map
(of the training set) with a certain weight. We empirically
determined 0.2 to be a good choice. This way, we explic-
itly take into account the “vertical centre bias” that was
observed in Figure 3b. This gives us a total of 24 models.

To better analyse the evaluation results, we can dif-
ferently group them: If we group the entire set of models
by the saliency predictor, we can see that the “newer”
model’s performance is consistently superior to that of an
“older” one, while the average model outperforms all of
the individual models (see Figure 12).

If we now group by the interpretation method, the con-
clusions become less clear-cut. For both density-based
metrics, the combined interpretation performs best, fol-
lowed by the continuity-aware interpretation (see Figure 13a).
For both location-based metrics, the continuity-aware in-
terpretation is now the one in the lead, closely followed by
the combined interpretation (see Figure 13b).

For the average saliency predictor, however, it turned
out that some of these differences were not statistically
significant, and so the combined interpretation with the av-
erage saliency predictor was ranked 1st for all the metrics
in the “Salient360!” Grand Challenge [25], for some met-
rics tied in the first place with several other approaches,
including the continuity-aware interpretation with the av-
erage saliency predictor (see Table 4).

It is also interesting to note that the worst (on average)
saliency predictor – GBVS – in combination with the best
(on average) interpretation – combined – performs bet-
ter than the best (on average) predictor – SAM-ResNet –
with the worst (on average) interpretation – the extended
cutout.

All the qualitative results were reproduced both on the
training and the test set. We see that the optimal choice
of the interpretation can depend on the metric choice, but
the combined interpretation generally fares rather well, de-
livering the best-ranked results (out of the models submit-
ted before the test set was released) for all metrics at the
“Salient360!” Grand Challenge in the “Head-Eye saliency
prediction” track [18, 25]. It also yields the best (in terms
of absolute values) average scores for KLD and CC metrics
across all submitted models.

Naturally, saliency prediction can benefit from spe-
cialized models, which were trained with the information
about the equirectangular format of the images and the
360◦ nature of the scenes in mind, so training a dedi-
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Figure 12: Performance summary of all the models, split by the saliency predictor: correlation coefficient (12a) and normalized scanpath
saliency (12b). A similar trend is observed for the other metrics as well.
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Figure 13: Performance summary of all the models, split by the input image interpretation: Kullback-Leibler divergence (13a, similar results
for correlation coefficient) and area under the curve (13b, similar results for normalized scanpath saliency).

cated model for this kind of stimuli is still worthwhile.
It seems, however, that using pretrained state-of-the-art
image saliency predictors to tackle the 360◦-scene saliency
prediction problem could suffice, at least as a first approxi-

mation, for some applications. For a minimal-effort model,
one can therefore focus on an appropriate stimulus inter-
pretation rather than on developing and training a whole
new prediction model. Combining input interpretations
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KLD
(rank)

CC
(rank)

NSS
(rank)

AUC
(rank)

mean
rank

Combined interp.
+ avg. saliency model

+ centre bias
0.42 (1) 0.62 (1) 0.81 (1) 0.72 (1) 1

Combined interp.
+ avg. saliency model

0.45 (1) 0.58 (1) 0.81 (1) 0.73 (1) 1

Zhu et al. [33] 0.48 (1) 0.53 (6) 0.92 (1) 0.74 (1) 2.25

Ling et al. [34] 0.51 (5) 0.54 (6) 0.94 (1) 0.74 (1) 3.25

Continuity-aware interp.
+ avg. saliency model

0.50 (5) 0.55 (6) 0.92 (1) 0.75 (1) 3.25

. . . . . . . . . . . . . . . . . .

Extended cutout interp.
+ avg. saliency model

0.58 (5) 0.41 (12) 0.69 (8) 0.69 (6) 7.75

Table 4: The “Salient360!” Grand Challenge official unbiased results for the Head-Eye Saliency track, top-5 snippet and our extended cutout
interpretation-based model. The rank (within each metric) was only increased if the difference between the respective sets of performance
figures was statistically significant. 16 models were submitted to the challenge in total, with the worst average rank of 14.25.

and dedicated training procedure may yield even better
results.

The source code of our approach is publicly available
at http://www.michaeldorr.de/salient360.

5. Conclusion

In this work we have explored the applicability of reg-
ular image saliency models for the panoramic image case
with a full 360◦ field of view. To this end we proposed
several ways of “interpreting” the input equirectangular
image, which would deal with the projection-related is-
sues. We used three well-performing regular 2D image
saliency predictors (and their combination via averaging).
Our best-performing input interpretation is a combination
of the continuity-aware and the cube map approach, and
requires computing four saliency maps: one for the frontal
equirectangular view, one for the “rear view” (i.e. looking
backwards from the starting viewing position), and one
saliency map for each of the top and the bottom cube map
faces. Combined with the average saliency predictor, this
took the first prize at the Head-Eye Saliency Prediction
track of the “Salient360!” Grand Challenge.
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