

Sequence-to-sequence deep learning for eye movement classification

<u>Mikhail Startsev</u>

Ioannis Agtzidis

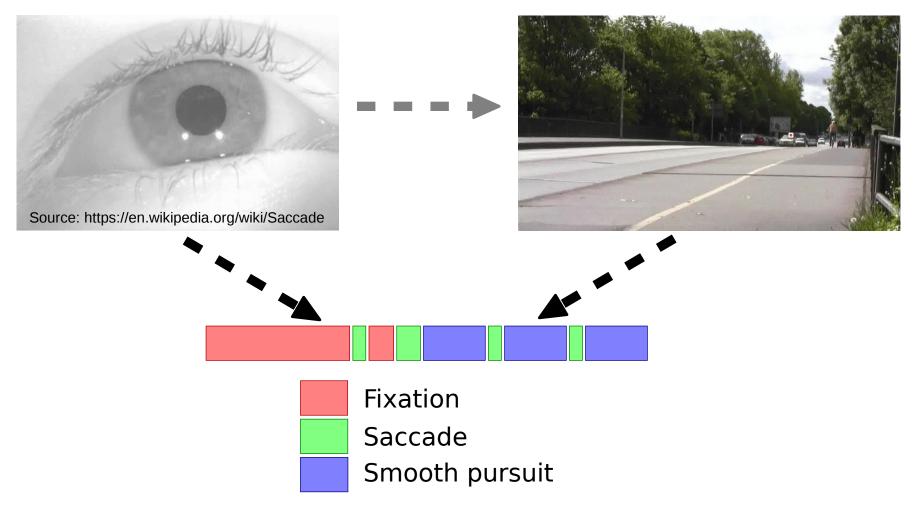
Michael Dorr

Technical University Munich

Institute for Human-Machine Communication



What is eye movement classification?



Mikhail Startsev - Deep eye movement sequence classification

What is eye movement classification?

GazeCom data set (Dorr et al. 2010): http://michaeldorr.de/smoothpursuit

- Dynamic natural scenes
- Eighteen 20-second clips
- 47 observers per clip (on average)
- Full manual annotation for major eye movement types (fixations, saccades, smooth pursuits, + "noise")
 - \rightarrow over 4.5 hours of hand-labelled eye tracking recordings



Why do eye movement classification?

- Eye movement-level statistics and analysis
- High(er)-level analysis of eye tracking sessions (e.g. catch-up saccades during smooth pursuit)
- Benefits for eye movement-based interaction

Why do eye movement classification?

- Eye movement-level statistics and analysis
- High(er)-level analysis of eye tracking sessions (e.g. catch-up saccades during smooth pursuit)
- Benefits for eye movement-based interaction

Why not just use what is already built into the eye tracker software?

Why do eye movement classification?

- Eye movement-level statistics and analysis
- High(er)-level analysis of eye tracking sessions (e.g. catch-up saccades during smooth pursuit)
- · Benefits for eye movement-based interaction

Why not just use what is already built into the eye tracker software?

- Simpler algorithms
- No smooth pursuit detection
 - \rightarrow poorer fixation detection in general
 - → "elongated" "dynamic" fixations during dynamic stimuli viewing

Classical algorithms

- Thresholding speed, dispersion, acceleration (I-VT, I-DT, I-VVT, I-VDT, Dorr et al. 2010)
- Hand-crafted features (I-VMP, Berg et al. 2009, Santini et al. 2012, Larsson et al. 2015)

Machine learning algorithms

- SVM (Anantrasirichai et al. 2016)
- Convolutional neural networks (Hoppe and Bulling 2016)
- Clustering (Agtzidis et al. 2016)
- Random forests (Zemblys et al. 2017)

Classical algorithms

- Thresholding speed, dispersion, acceleration (I-VT, I-DT, I-VVT, I-VDT, Dorr et al. 2010)
- Hand-crafted features (I-VMP, Berg et al. 2009, Santini et al. 2012, Larsson et al. 2015)

Machine learning algorithms

- SVM (Anantrasirichai et al. 2016)
- Convolutional neural networks (Hoppe and Bulling 2016)
- Clustering (Agtzidis et al. 2016)
- Random forests (Zemblys et al. 2017)

Does not use sequential information

Classical algorithms

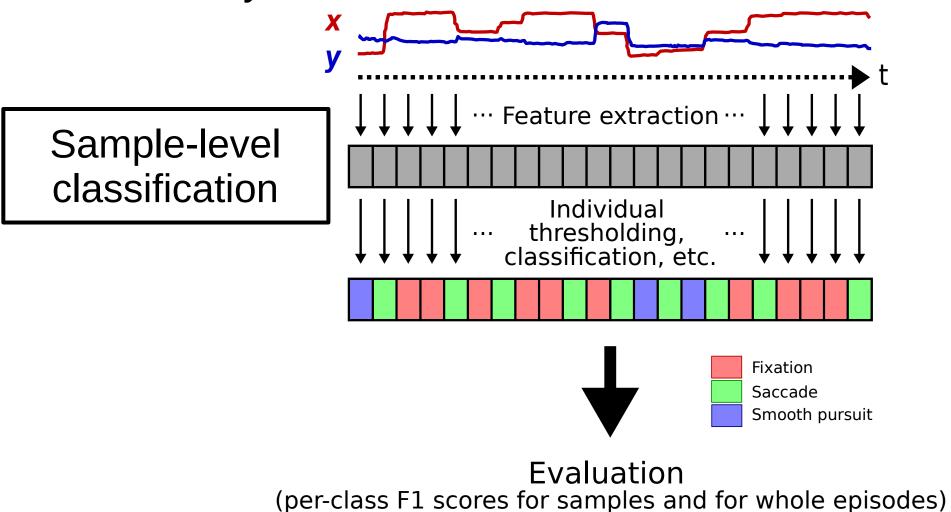
Thresholding speed, dispersion, acceleration (I-VT, I-DT, I-VVT, I-VDT, Dorr et al. 2010)
Hand-crafted features (I-VMP, Berg et al. 2009, Santini et al. 2012,

Larsson et al. 2015)

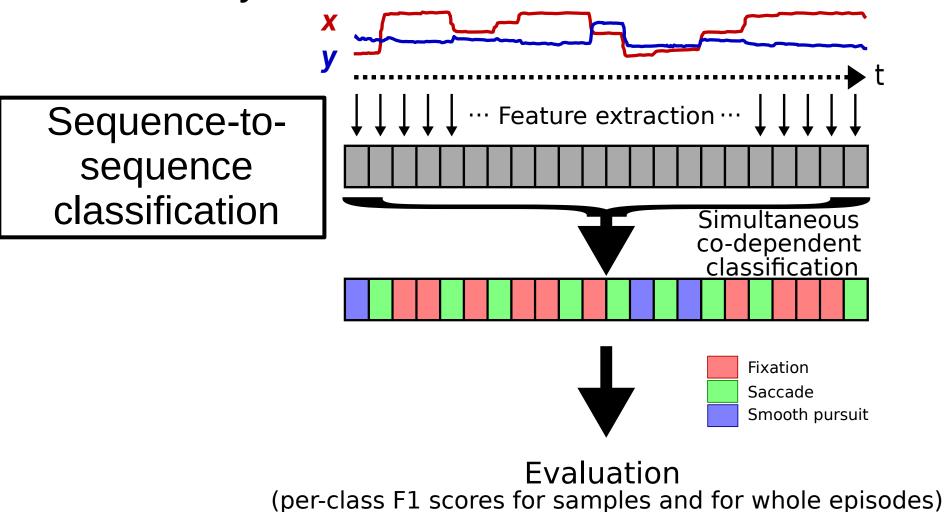
Machine learning algorithms

(essentially) Sample-level classification

SVM (Anantrasirichai et al. 2016)
Convolutional neural networks (Hoppe and Bulling 2016)
Clustering (Agtzidis et al. 2016)
Random forests (Zemblys et al. 2017)



Mikhail Startsev - Deep eye movement sequence classification



Mikhail Startsev - Deep eye movement sequence classification

Our model

A typical combination of layers for deep sequence-to-sequence processing:

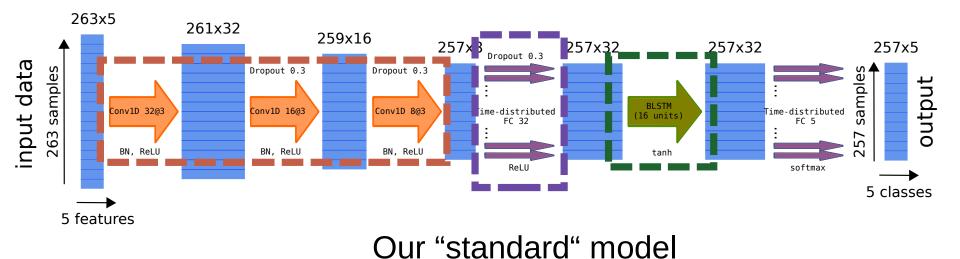
- Convolutional (1D in our case)
- Dense
- Long short-term memory LSTM (bidirectional in our case)

We pre-extracted speed and direction features on different scales from raw gaze location sequences.

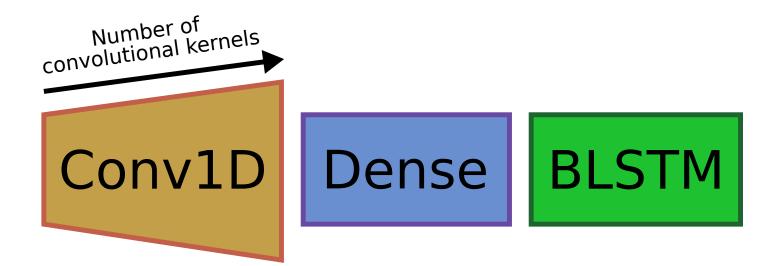
Our model

A typical combination of layers for deep sequence-to-sequence processing:

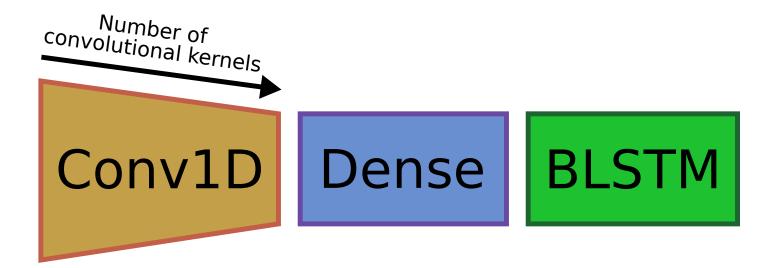
- Convolutional (1D in our case)
- Dense
- Long short-term memory LSTM (bidirectional in our case)



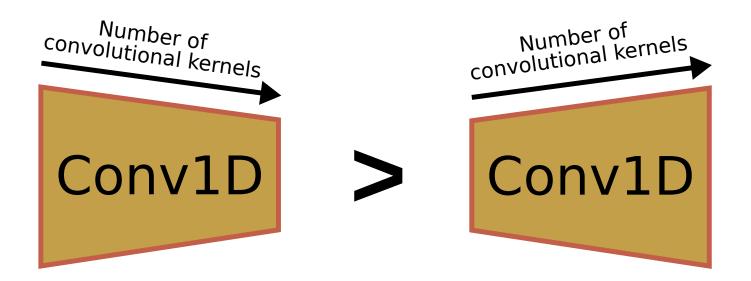
- Fixed filter size
- Number of filters in each layer: increasing or decreasing?



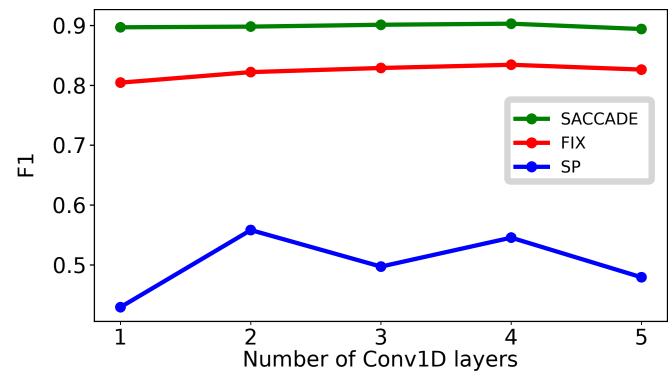
- Fixed filter size
- Number of filters in each layer: increasing or decreasing?



- Fixed filter size
- Number of filters in each layer: increasing or decreasing?



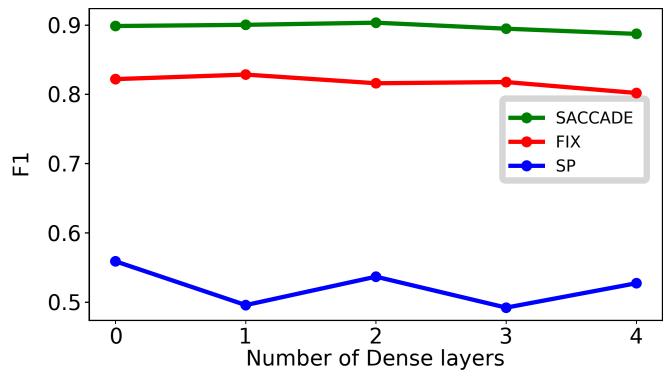
- Fixed filter size
- Number of filters in each layer: increasing or decreasing?
- Varying number of layers



Mikhail Startsev - Deep eye movement sequence classification

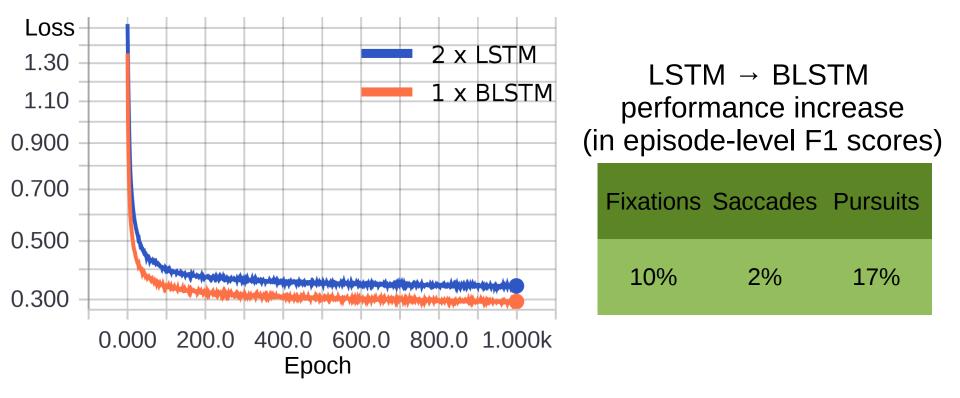
Our model: Dense block

- Fixed number of units
- Varying number of layers

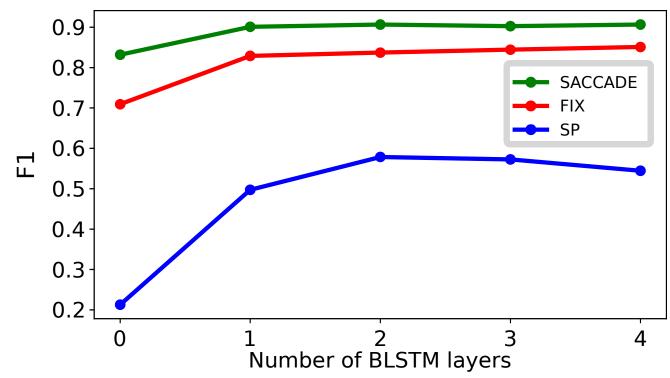


Mikhail Startsev - Deep eye movement sequence classification

• Do we really need bidirectional?



- Do we really need bidirectional?
- Varying number of layers (similar picture for various units counts in each layer)



Mikhail Startsev - Deep eye movement sequence classification

Our model: Final architecture

- Four convolutional layers
- No dense layers
- Two stacked BLSTM layers

Ca. 13,000 trainable parameters, compared to ca. 10,000 in the "standard" model.

 \rightarrow Increase model size with caution, depending in the data set size and diversity.

	Individual samples, F1 score			Whole episodes, F1 score		
	Fixations	Saccades	Pursuits	Fixations	Saccades	Pursuits
Final architecture	93.8%	89.6%	70.7%	91.5%	94.9%	62.9%
Increase (absolute)	-0.2%	0.3%	0.4%	1.6%	0.2%	3.3%

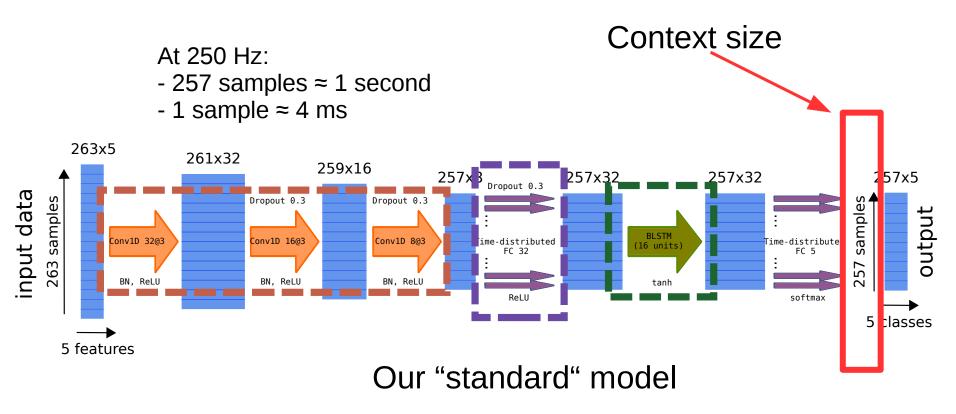
Mikhail Startsev - Deep eye movement sequence classification

Our model: Final architecture

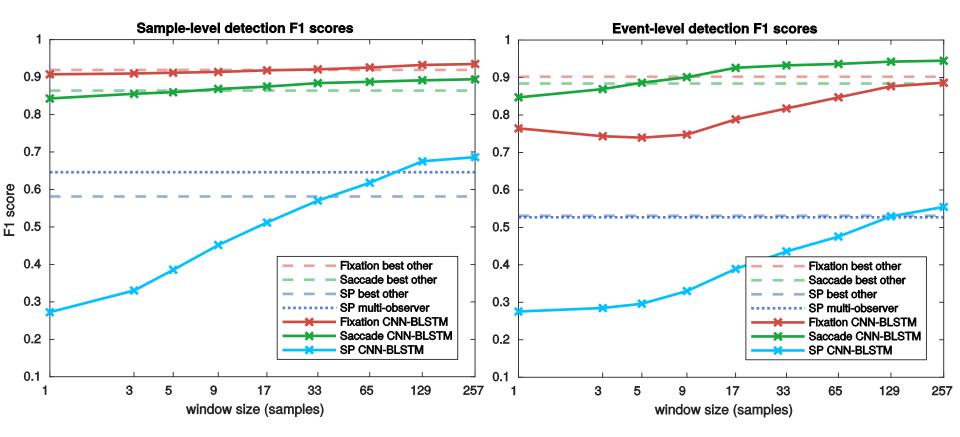
	<i>Individua</i> Fixations	al samples, Saccades	F1 score Pursuits	<i>Whole e</i> Fixations	pisodes, F1 Saccades	l score Pursuits
Final model	93.8%	89.6%	70.7%	91.5%	94.9%	62.9%
[Agtzidis et al. 2016]	88.6%	86.4%	64.6%	81.0%	88.4%	52.7%
I-VMP (optimized)	90.9%	68.0%	58.1%	79.2%	81.5%	53.1%
[Larsson et al. 2015]	91.2%	86.1%	45.9%	87.3%	88.4%	39.2%
[Berg et al. 2009]	88.3%	69.7%	42.2%	88.6%	85.6%	42.4%
Increase over state of the art (absolute)	1.9%	3.2%	6.1%	1.3%	6.5%	9.8%

Mikhail Startsev - Deep eye movement sequence classification

Our model: Influence of context size



Our model: Influence of context size



(5 speed features used as input, varying context size, "standard" architecture)

Conclusions

- Compared to 12 literature models, our deep sequence-to-sequence solution performs best for each eye movement type
- Smooth pursuit is still trickier to detect than fixations and saccades
- Smooth pursuit benefits the most from
 - context size increase
 - architecture improvements

Thank you for your attention!

Original data, benchmark, related publications:

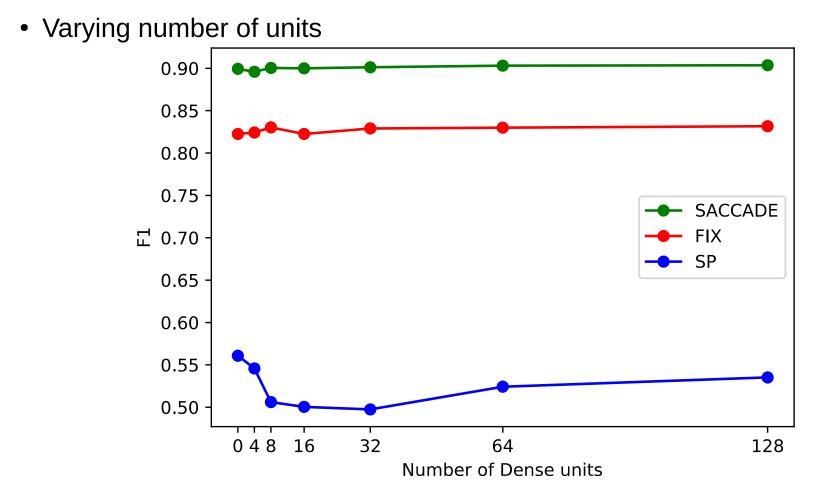
Code, data:

Thank you for your attention!

Original data, benchmark, related publications:

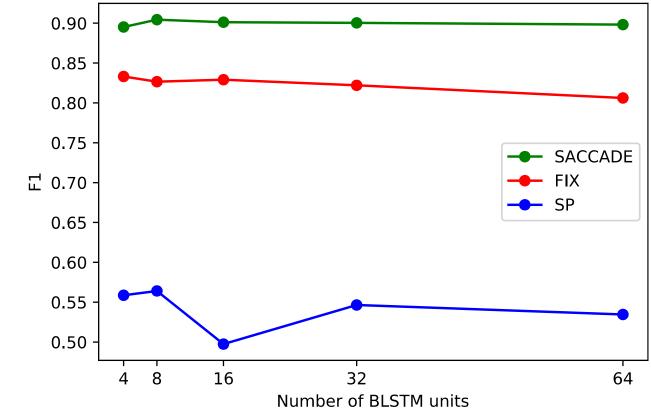
Code, data:

Our model: Dense block



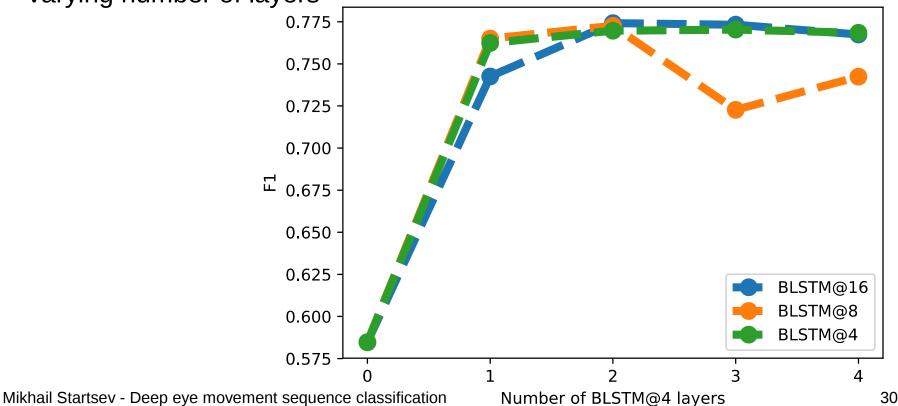
Mikhail Startsev - Deep eye movement sequence classification

- Do we really need bidirectional?
- Varying number of units

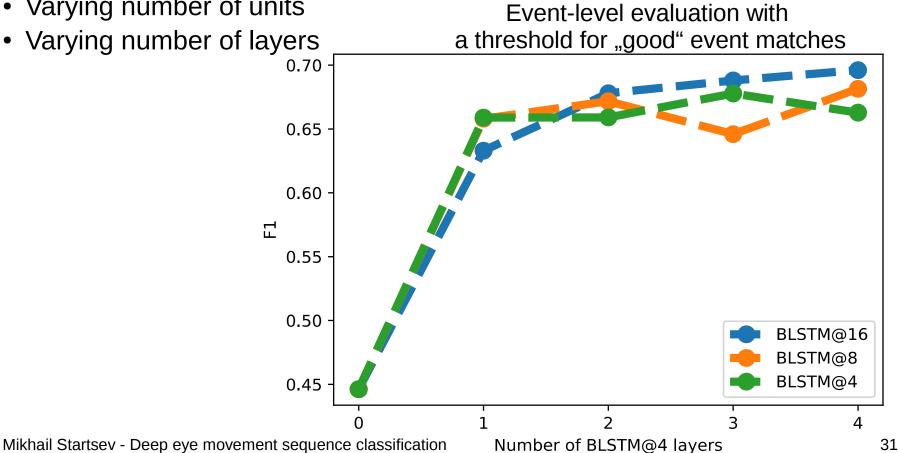


Mikhail Startsev - Deep eye movement sequence classification

- Do we really need bidirectional?
- Varying number of units
- Varying number of layers



- Do we really need bidirectional?
- Varying number of units
- Varying number of layers



Our model: Final architecture

- Four convolutional layers
- No dense layers
- Two stacked BLSTM layers

Compared to the "standard" architecture (at ca. 1s context windows):

	Individual samples, F1			Whole episodes, IoU >= 0.5, F1		
	Fixations	Saccades	Pursuits	Fixations	Saccades	Pursuits
Increase (absolute)	0.2%	0.3%	0.4%	1.5%	0.5%	5.8%
Final score	93.8%	89.6%	70.7%	88.2%	92.9%	54.2%

Mikhail Startsev - Deep eye movement sequence classification